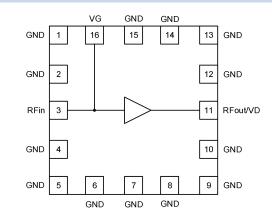


关键技术指标


• 工作频率: 30~2500MHz

• 饱和输出功率: 40dBm

• 功率增益: 13dB

•漏极效率: 60%

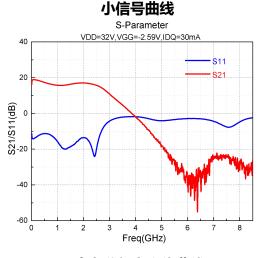
• 芯片尺寸: 6mm×6mm×2.5mm

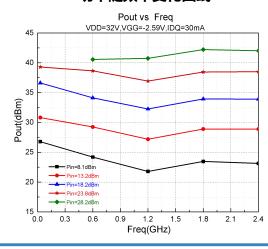
产品简介

GM1302型功率放大器采用GaN HEMT工艺制备,具有超宽带、高功率的特点。所有芯片产品均经过100%射频测试。GM1302型功率放大器为双电源工作,漏极电压为28V时可在30~2500MHz内提供40dBm的输出功率。该芯片主要用于短波电台、卫星通讯等领域。

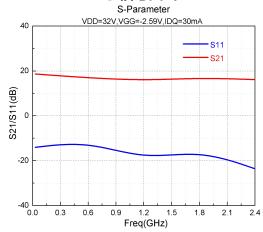
主要电参数 测试条件: VDD=32V, IDQ=30mA, VGG=-2.59V, CW。

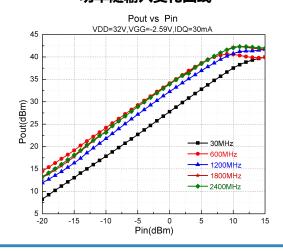
参数名称	符号	测试条件	最小值	典型值	最大值	单位
工作频率	Freq	-	30		2500	MHz
饱和输出功率	P _{sat}	-	-	40	-	dBm
功率增益	Gp	Pout=40dBm	-	13	-	dB
功率增益平坦度	ΔG_p	Pout=40dBm	-	3	-	dB
増益	G		-	16	-	dB
増益平坦度	ΔG		-	4	-	dB
漏极效率	DE	Pout=40dBm	-	60	-	%
工作电流	Idd	Pout=40dBm	-	0.8	-	А
输入反射系数	S11	静态工作点	-	10	-	dB


如果您需要更详细的产品信息,请与我们的市场人员或设计师取得联系。

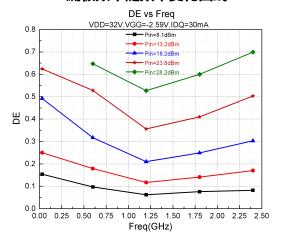

最大额定值

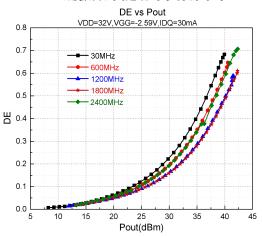
符号	参数	数值	单位
VDD	工作电压	34	V
VGG	偏置电压	-6	V
Pin	输入功率	32	dBm
T _{CH}	沟道温度	200	℃
T _{STG}	储存温度	-65~150	℃
T _M	装配温度	250	℃

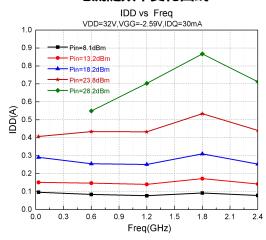

典型曲线

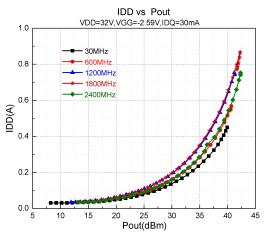

功率随频率变化曲线

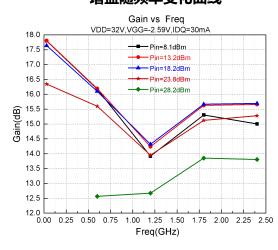
小信号曲线

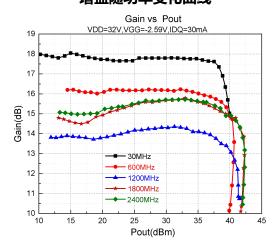

功率随输入变化曲线


如果您需要更详细的产品信息,请与我们的市场人员或设计师取得联系。


漏极效率随频率变化曲线

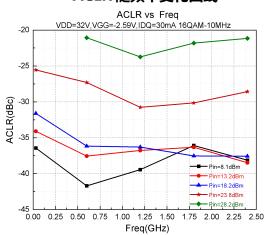

漏极效率随功率变化曲线

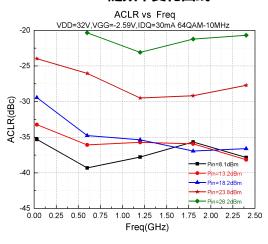

电流随频率变化曲线


电流随功率变化曲线

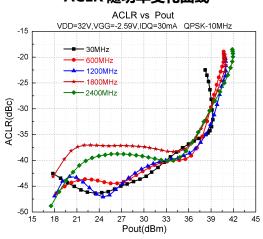
增益随频率变化曲线

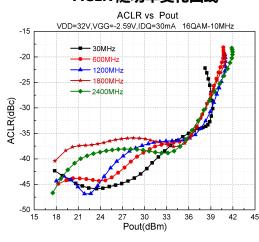
增益随功率变化曲线

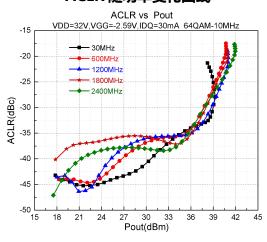

如果您需要更详细的产品信息,请与我们的市场人员或设计师取得联系。


ACLR 随频率变化曲线

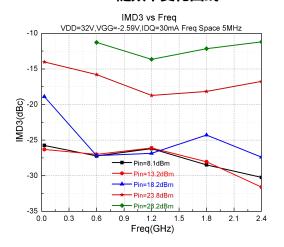
ACLR vs Freq VDD=32V,VGG=-2.59V,IDQ=30mA QPSK-10MHz Pin=13,2dBm Pin=18,2dBm Pin=18,2dBm Pin=28,2dBm Pin=28,2dBm Fin=28,2dBm Pin=28,2dBm Fin=28,2dBm Fin=28,2dBm Fin=28,2dBm Fin=28,2dBm Fin=28,2dBm Fin=28,2dBm Fin=28,2dBm

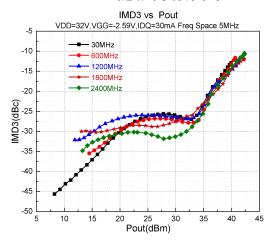

ACLR 随频率变化曲线


ACLR 随频率变化曲线

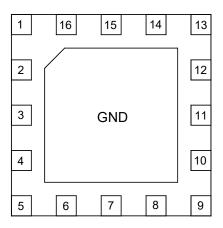

ACLR 随功率变化曲线

ACLR 随功率变化曲线


ACLR 随功率变化曲线


如果您需要更详细的产品信息,请与我们的市场人员或设计师取得联系。

IMD3 随频率变化曲线

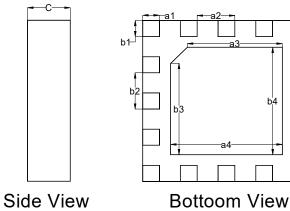


IMD3 随功率变化曲线

管脚定义说明和封装尺寸

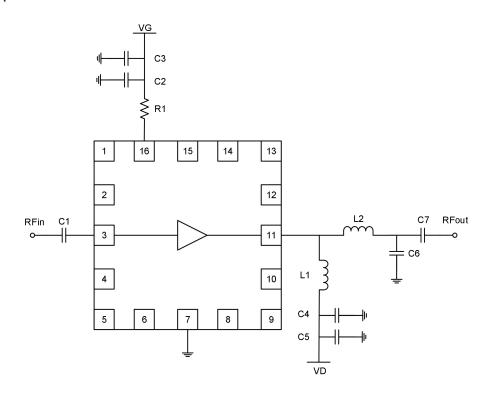
GM1302型芯片管脚分布图:

GM1302 型芯片管脚定义:


焊盘序号	功能	符号	
1/2/4/5/6/7/8/9/10/	地	GND	
12/13/14/15	地		
3	射频输入端	RFin	
11 射频输出端/漏极供电		RFout/VD	
16	偏置供电端	VG	

如果您需要更详细的产品信息,请与我们的市场人员或设计师取得联系。

GM1302 型芯片封装图 (单位: mm):


GM1302型芯片封装尺寸:

尺寸符号	小大它只	公差
А	6.0	±0.1
В	6.0	±0.1
С	2.5	±0.1
a1	0.6	±0.05
a2	1.35	±0.05
a3	3.4	±0.05
a4	4.0	±0.05
b1	0.6	±0.05
b2	1.35	±0.05
b3	3.4	±0.05
b4	4.0	±0.05

如果您需要更详细的产品信息,请与我们的市场人员或设计师取得联系。

典型应用电路:

GM1302 型芯片物料清单:

元器件	值	型 号	备注
C1/C2/C4/C7	1000pF	GRM1555C2D	0603 耐压超过 100V
C3/ C5	2.2uF	GRM188R72A223KAC4	1206 耐压大于 100V
C6	0.9pF	GRM1885C1HR90BA01D	0603 耐压超过 100V
L1	900nH	1008AF-901X_EC	0806
L2	0	/	/
R1	390Ω	RC0805FR-07390RL	0805

如果您需要更详细的产品信息,请与我们的市场人员或设计师取得联系。

应用说明:

● GM1302 功放属于常开器件应严格按照上下电顺序;

上电:

- (1) 电源接地/功放接地;
- (2) 设置 VG=-5V, 并开启;
- (3) 设置 VD=28V, 并开启;
- (4) 增大 VG 电压, 使得 IDQ=30mA;
- (5) 开启射频信号源。

下电:

- (1) 关闭射频信号源;
- (2) 减小 VG 至-5V;
- (3) 设置 VD=0V, 并关闭;
- (4) 关闭 VG。